veri bilimi etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
veri bilimi etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

16 Temmuz 2025 Çarşamba

Python ile Web Scraping: Güvenli ve Etkili Veri Toplama Yöntemleri

Python ile Web Scraping Nedir?

Günümüzde internette yer alan verilerin büyük bir kısmı, çeşitli analizler ve projeler için kullanılmak isteniyor. Web scraping, yani web kazıma, internet sitelerindeki verileri otomatik olarak çekmek ve analiz etmek için kullanılan bir yöntemdir. Python, sunduğu güçlü kütüphaneler sayesinde web scraping işlemlerinde en çok tercih edilen programlama dillerinden biridir. Bu yazıda, Python ile web scraping’in temellerini, güvenliğini ve etkili kullanım yöntemlerini ele alacağız.

Web Scraping için Gerekli Kütüphaneler

Python ile web scraping yaparken en çok kullanılan kütüphaneler arasında Requests ve BeautifulSoup yer alır. Requests, internetten veri çekmek için kullanılırken, BeautifulSoup ise HTML ve XML dökümanlarını kolayca ayrıştırmaya yarar. Ayrıca, dinamik içeriklerle çalışmak için Selenium gibi tarayıcı otomasyon araçlarından da faydalanmak mümkündür.

Öncelikle, bu kütüphaneleri kurmak için aşağıdaki komutları kullanabilirsiniz:

pip install requests beautifulsoup4 selenium

Temel Bir Web Scraping Örneği

Basit bir örnek üzerinden ilerleyelim. Diyelim ki bir haber sitesindeki başlıkları çekmek istiyorsunuz. Bunun için öncelikle Requests ile sayfanın HTML içeriğini alıp, ardından BeautifulSoup ile çözümleyebilirsiniz.

Örnek kod:

import requests
from bs4 import BeautifulSoup

url = 'https://www.ornekhaber.com'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
basliklar = soup.find_all('h2', class_='haber-baslik')
for baslik in basliklar:
  print(baslik.text)

Yukarıdaki kodda, belirtilen URL’den sayfanın içeriği çekiliyor ve haber başlıklarını içeren <h2> etiketleri bulunarak ekrana yazdırılıyor. Elbette, her web sitesi farklı bir yapı kullanır. Bu nedenle, hedef sitenin HTML yapısını inceleyerek uygun etiket ve sınıf isimlerini belirlemeniz gerekir.

Dinamik İçeriklerde Selenium Kullanımı

Bazı web siteleri içeriğini JavaScript ile yüklüyor olabilir. Bu durumda Requests ve BeautifulSoup yetersiz kalacaktır. Bunun için Selenium kütüphanesi devreye girer. Selenium, bir web tarayıcısını otomatik olarak kontrol etmenizi sağlar ve sayfa üzerindeki dinamik içerikleri de yükleyebilir.

Selenium’u kullanarak bir sayfanın içeriğini almak için şu adımları izleyebilirsiniz:

from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from bs4 import BeautifulSoup

driver_path = 'chromedriver.exe yolunu girin'
service = Service(driver_path)
driver = webdriver.Chrome(service=service)
driver.get('https://www.ornekhaber.com')
soup = BeautifulSoup(driver.page_source, 'html.parser')
# İstenilen verileri soup ile çekebilirsiniz
driver.quit()

Web Scraping Yaparken Dikkat Edilmesi Gerekenler

Web scraping işlemlerinde en önemli konulardan biri etik ve hukuki kurallara uymaktır. Her web sitesinin kullanım şartlarını inceleyin ve robots.txt dosyalarını kontrol edin. Aşırı istek göndererek sunucuya zarar vermemek adına isteklere zaman aralığı koymak, yani “delay” eklemek çok önemlidir. Ayrıca, elde edilen verilerin ticari amaçla kullanımı için mutlaka sitenin izin verdiğinden emin olun.

Scraping sırasında aşağıdaki noktalara dikkat etmek gerekir:

  • İstekler arasında time.sleep() ile gecikme ekleyin.

  • Çok fazla veri çekmekten kaçının.

  • Kullanıcı ajanı (User-Agent) bilgisini isteklere ekleyin.

Sonuç ve İleri Seviye Yöntemler

Python ile web scraping, doğru kütüphaneler ve yöntemlerle oldukça etkili bir şekilde gerçekleştirilebilir. Ancak, veri çekme işlemlerinde dikkatli olmak ve yasal sınırlar içinde kalmak büyük önem taşır. Daha ileri seviyede büyük ölçekli veri çekimleri için Scrapy gibi framework’ler de tercih edilebilir. Ayrıca, çekilen verilerin düzenlenmesi ve saklanması için Pandas gibi veri analizi kütüphaneleriyle entegre çalışmalar yapılabilir. Web scraping, veri bilimi ve makine öğrenmesi projelerinin temel taşlarından biri olarak öne çıkmaktadır.

3.

15 Temmuz 2025 Salı

Yapay Zeka Destekli Metin Analizi: Python ile Sentiment Analysis Nasıl Yapılır?

Yapay Zeka Destekli Metin Analizi: Python ile Sentiment Analysis Nasıl Yapılır?

Günümüzde sosyal medya ve dijital platformlarda milyonlarca kullanıcı sürekli olarak içerik oluşturuyor. Bu içeriklerin duygusal tonunu, yani olumlu, olumsuz veya nötr olup olmadığını tespit etmek ise markalar, araştırmacılar ve yazılımcılar için oldukça değerli. İşte bu noktada, Yapay Zeka ve Doğal Dil İşleme (NLP) teknolojileri devreye giriyor. Bu makalede, Python dili kullanarak nasıl hızlı ve etkili bir şekilde metinlerin duygu analizini (Sentiment Analysis) yapabileceğinizi adım adım anlatacağım.

Sentiment Analysis Nedir?

Sentiment Analysis, metinlerdeki duygusal ifadelerin otomatik olarak tespit edilmesini sağlayan bir doğal dil işleme tekniğidir. Özellikle müşteri yorumları, sosyal medya gönderileri ve incelemeler gibi veri kaynaklarında, kullanıcıların pozitif, negatif veya nötr duygu taşıyıp taşımadığını belirlemek için kullanılır. Bu sayede markalar müşteri memnuniyetini analiz edebilir, kamuoyu araştırmaları yapılabilir ve dijital pazarlama stratejileri geliştirilebilir.

Python ile Duygu Analizi İçin Hangi Kütüphaneler Kullanılır?

Python, doğal dil işleme ve yapay zeka alanında zengin bir ekosisteme sahiptir. Sentiment Analysis yapmak için en çok tercih edilen kütüphaneler şunlardır:

  • NLTK (Natural Language Toolkit): Temel metin işleme ve basit duygu analizi için idealdir.
  • TextBlob: Kullanımı kolay ve hızlı sonuçlar verir, temel duygu analizinde sıklıkla kullanılır.
  • Scikit-learn: Makine öğrenmesi tabanlı daha gelişmiş modeller kurmak için uygundur.
  • Transformers (HuggingFace): BERT, RoBERTa gibi ileri seviye derin öğrenme tabanlı modellerle üstün doğruluk sağlar.

TextBlob ile Hızlı Sentiment Analysis Nasıl Yapılır?

Python'da duygu analizi için en kolay yöntemlerden biri TextBlob kütüphanesidir. TextBlob, metinlerdeki olumlu ve olumsuz duygu oranını (polarity) ve metnin nesnelliğini (subjectivity) kolayca analiz edebilir. İşte basit bir örnek:

from textblob import TextBlob

metin = "Bugün hava çok güzel ve her şey harika gidiyor!"
blob = TextBlob(metin)
print(blob.sentiment)

Yukarıdaki kodda 'polarity' değeri pozitif ise metin olumlu, negatif ise olumsuz, sıfıra yakınsa nötr olarak yorumlanır. Bu yöntemi sosyal medya verilerinde veya kullanıcı yorumlarında toplu analiz yapmak için de kullanabilirsiniz.

Gelişmiş Model: BERT ile Türkçe Duygu Analizi

Eğer daha yüksek doğruluk ve Türkçe özelinde daha isabetli sonuçlar istiyorsanız, HuggingFace Transformers kütüphanesinde yer alan BERT tabanlı modelleri tercih edebilirsiniz. Özellikle dbmdz/bert-base-turkish-cased modeli, Türkçe metinlerde güçlü sonuçlar verir. Kurulum ve kullanım için aşağıdaki örneğe göz atabilirsiniz:

from transformers import pipeline

duygu_analiz = pipeline("sentiment-analysis", model="dbmdz/bert-base-turkish-cased")
sonuc = duygu_analiz("Bu ürün beklentilerimi gerçekten karşılamadı.")
print(sonuc)

Bu kodda, analiz edilen metnin duygu etiketi ve güven skoru döner. Böylece, binlerce yorumu kısa sürede sınıflandırabilirsiniz. BERT gibi modeller, deyim ve ironi gibi karmaşık dil yapılarını da daha iyi anlamlandırabildiği için kurumsal projelerde tercih sebebidir.

Sentiment Analysis Sonuçlarını Yorumlama ve Kullanım Alanları

Yaptığınız duygu analizi sonuçlarını tablolar veya grafiklerle görselleştirerek toplu eğilimleri keşfedebilirsiniz. Ayrıca, müşteri memnuniyetini ölçmek, kriz yönetimi yapmak ya da dijital pazarlama stratejileri geliştirmek için de kullanabilirsiniz. Elde edilen verilerle hedef kitlenizin duygu dünyasını daha iyi anlayıp, onlara uygun çözümler geliştirebilirsiniz.

Sonuç

Yapay zeka destekli duygu analizi, günümüzün veri odaklı dünyasında önemli bir yer tutuyor. Python ile ister basit ister gelişmiş yöntemlerle duygu analizi yapmak artık çok kolay. Siz de bu tekniklerle projelerinize değer katabilir, müşterilerinizin ya da takipçilerinizin duygusal eğilimlerini analiz edebilirsiniz.