2 Temmuz 2025 Çarşamba

2024’te Yapay Zekâ ile Otomatik Metin Özeti Oluşturma: Python ve Hugging Face Transformers Kullanımı

Giriş: Neden Otomatik Metin Özeti?

Günümüzde bilgiye erişim kolaylaştıkça, okuma ve anlama yükü de artıyor. Özellikle uzun makaleler, raporlar veya e-posta zincirleriyle uğraşırken, hızlıca özet bilgilere ulaşmak büyük bir ihtiyaç haline geldi. İşte bu noktada, yapay zekâ destekli otomatik metin özeti araçları devreye giriyor. Bu yazıda Python dili ve Hugging Face Transformers kütüphanesiyle, güncel bir yapay zekâ modeli kullanarak nasıl hızlı ve etkili bir şekilde metin özeti oluşturabileceğinizi adım adım anlatacağım.

Gereksinimler ve Kurulum

Öncelikle, bu işlemi gerçekleştirmek için bilgisayarınızda Python yüklü olmalı. Ardından, komut satırında aşağıdaki komutları kullanarak gerekli kütüphaneleri yükleyebilirsiniz:

pip install transformers torch

Burada transformers kütüphanesi, Hugging Face’in sunduğu önceden eğitilmiş modelleri kolayca kullanmamızı sağlıyor. PyTorch (torch) ise bu modellerin çalışması için gerekli olan derin öğrenme altyapısını sunuyor.

Model Seçimi ve Kullanımı

Metin özetleme için Transformer temelli pek çok model mevcut. Özellikle facebook/bart-large-cnn ve google/pegasus-xsum son dönemde yüksek performanslarıyla öne çıkıyor. Biz bu örnekte, BART modelini kullanacağız. Aşağıdaki Python kodu ile seçtiğiniz bir metni özetleyebilirsiniz:

from transformers import pipeline

ozetleme_araci = pipeline("summarization", model="facebook/bart-large-cnn")
metin = """Buraya özetlemek istediğiniz uzun metni ekleyin. Bu metin, bir makale, rapor ya da haber olabilir."""
ozet = ozetleme_araci(metin, max_length=100, min_length=25, do_sample=False)
print("Özet:", ozet[0]['summary_text'])

Buradaki max_length ve min_length parametreleri, özetin uzunluğunu belirler. do_sample=False ise özetin daha tutarlı ve tekrarlanabilir olmasını sağlar.

Pratik İpuçları ve Dikkat Edilmesi Gerekenler

- Metin özetleme modelleri, en iyi sonucu genellikle İngilizce metinlerde verir. Türkçe metinler için Hugging Face üzerinde t5-small-turkish-summarization gibi Türkçe’ye özel modelleri tercih edebilirsiniz.

- Eğer metniniz çok uzunsa, modele parça parça göndermek daha doğru sonuçlar verir. Çünkü çoğu modelin karakter veya kelime sınırı vardır.

- Özellikle haber siteleri, bloglar veya akademik içerikler için bu tür otomatik özetleme araçları büyük zaman tasarrufu sağlar. Ancak, oluşturulan özetlerin ana fikri doğru yansıtıp yansıtmadığını mutlaka kontrol etmelisiniz.

Sonuç ve Gelecekteki Gelişmeler

Yapay zekâ ile otomatik metin özeti oluşturmak, günümüzde hem bireysel hem de kurumsal kullanıcılar için büyük kolaylık sağlıyor. Python ve Hugging Face Transformers sayesinde, kodlama bilgisi sınırlı olanlar bile çok kısa sürede kendi özetleme uygulamalarını hayata geçirebilir. Gelecekte ise çok daha gelişmiş, çok dilli ve bağlama duyarlı modellerin kullanıma sunulması bekleniyor. Siz de bu teknolojiyi iş akışınıza dahil ederek zamandan ve emekten tasarruf edebilirsiniz.

1 Temmuz 2025 Salı

Evde Akıllı Aydınlatma Sistemi Kurulumu: Adım Adım Rehber

Evde Akıllı Aydınlatma Sistemi Kurulumu: Adım Adım Rehber

Akıllı ev teknolojileri günümüzde giderek daha fazla ev sahibi tarafından tercih edilmektedir. Özellikle akıllı aydınlatma sistemleri, enerji tasarrufu sağlamak ve yaşam konforunu artırmak için ideal çözümler sunar. Bu yazımızda, evinizde kolayca kurabileceğiniz akıllı aydınlatma sistemlerinin nasıl çalıştığını, hangi ürünleri seçmeniz gerektiğini ve adım adım kurulum sürecini ele alıyoruz.

Akıllı Aydınlatma Nedir?

Akıllı aydınlatma sistemleri, geleneksel ampullerin yerine Wi-Fi veya Zigbee destekli akıllı ampuller ve anahtarlar kullanmanızı sağlar. Bu ürünler, akıllı telefon uygulamaları veya sesli asistanlar ile uzaktan kontrol edilebilir. Böylece ışıkları istediğiniz anda açıp kapatabilir, parlaklık ayarını değiştirebilir veya renk seçenekleriyle atmosfer yaratabilirsiniz.

Hangi Ürünleri Seçmeliyim?

Piyasada pek çok marka ve model mevcut. Başlangıç için Philips Hue, Xiaomi Yeelight, TP-Link Kasa gibi markaların ürünleri tercih edilebilir. Akıllı ampuller genellikle E27 ya da E14 duy tipine sahip olduğundan, evinizdeki mevcut duylarla uyumlu olmasına dikkat edin. Ayrıca, sistemin Wi-Fi üzerinden mi yoksa bir hub (merkez ünite) ile mi çalıştığını inceleyin. Wi-Fi tabanlı ürünler ekstra cihaz gerektirmezken, Zigbee tabanlı ürünler için bir hub kullanmanız gerekir.

Adım Adım Kurulum Rehberi

1. Akıllı Ampulü Takın: Seçtiğiniz akıllı ampulü mevcut duyunuza yerleştirin. Eğer duya uygun değilse, bir dönüştürücü kullanabilirsiniz.

2. Uygulamayı İndirin: Ürünün markasına özel uygulamayı akıllı telefonunuza indirin (örneğin Philips Hue, Mi Home veya Kasa Smart). İlk kez kullanacaksanız, uygulama üzerinden bir hesap oluşturmanız gerekebilir.

3. Cihazı Eşleştirin: Uygulama içerisindeki 'Cihaz Ekle' veya 'Ampul Ekle' seçeneği ile yeni ampulünüzü tanımlayın. Talimatları izleyin ve ampulünüzü Wi-Fi ağına bağlayın. Eğer Zigbee kullanıyorsanız, önce hub'ı kurup ardından ampulü ekleyin.

4. Oda ve Grup Oluşturun: Ampulünüzü belirli bir odaya veya gruba ekleyebilirsiniz. Böylece evinizin farklı bölümlerini ayrı ayrı veya topluca kontrol edebilirsiniz.

5. Otomasyon ve Zamanlayıcı Ayarları: Akıllı aydınlatma uygulamalarının çoğu, belirli saatlerde otomatik açma/kapama, gün doğumu/gün batımı gibi otomasyon seçenekleri sunar. Ayrıca, evde kimse yokken ışıkların açılıp kapanmasını sağlayarak güvenliğinizi artırabilirsiniz.

Sesli Asistanlarla Entegrasyon

Akıllı aydınlatma sistemlerinin en büyük avantajlarından biri, Google Asistan, Amazon Alexa veya Apple Siri gibi sesli asistanlarla uyumlu çalışabilmesidir. Uygulama üzerinden sesli asistan entegrasyonunu aktif hale getirdikten sonra, "Hey Google, salon ışıklarını kapat" gibi komutlarla evinizin aydınlatmasını kontrol edebilirsiniz.

Enerji Tasarrufu ve Güvenlik

Akıllı aydınlatma sistemleri, gereksiz enerji tüketimini önler. Uzaktan kontrol sayesinde ışıkları açık unutma derdiniz ortadan kalkar. Ayrıca, hareket sensörlü akıllı ampullerle, bir odada kimse yoksa ışıklar otomatik olarak kapanır. Bu da hem faturalarınızı düşürür hem de çevreye katkı sağlar.

Sonuç: Akıllı Evlerin Vazgeçilmezi

Evde akıllı aydınlatma sistemi kurmak, teknolojiyi yaşamınıza entegre etmenin kolay ve etkili yollarından biridir. Doğru ürünleri seçip temel adımları uyguladığınızda, hem konforunuz artar hem de enerji tasarrufu sağlarsınız. Akıllı ev teknolojileri ile ilgili daha fazla içerik için bizi takip etmeye devam edin!

3.

30 Haziran 2025 Pazartesi

Yapay Zeka ile Görüntü İşleme: Python ve OpenCV Kullanarak Kenar Tespiti Nasıl Yapılır?

Yapay Zeka ile Görüntü İşleme: Python ve OpenCV Kullanarak Kenar Tespiti Nasıl Yapılır?

Günümüzde yapay zeka ve görüntü işleme teknolojileri hem akademik çalışmalarda hem de endüstriyel uygulamalarda yaygın olarak kullanılmaktadır. Özellikle kenar tespiti, nesne tanıma ve görüntü segmentasyonu gibi temel işlemler, birçok projede ön plana çıkmaktadır. Bu yazıda, Python dili ve popüler açık kaynak kütüphanelerden biri olan OpenCV ile temel düzeyde kenar tespiti işleminin nasıl gerçekleştirileceğini adım adım anlatacağım.

Görüntü İşleme ve Kenar Tespiti Nedir?
Görüntü işleme, dijital görüntüler üzerinde çeşitli algoritmalar kullanarak bilgi elde etmeyi ve bu görüntüler üzerinde değişiklikler yapmayı amaçlayan bir bilim dalıdır. Kenar tespiti ise bir görüntüde nesne sınırlarını, şekillerini ve yapısal detayları ortaya çıkarmak için uygulanan bir işlemdir. Özellikle robotik, güvenlik kameraları ve otomatik kontrol sistemlerinde kenar tespiti büyük önem taşır.

Python ve OpenCV ile İlk Adımlar
OpenCV, Python ile birlikte kullanılabilen ve görüntü işleme konusunda zengin fonksiyonlara sahip güçlü bir kütüphanedir. Kenar tespiti için en sık kullanılan algoritmalardan biri Canny Kenar Algoritması’dır. Şimdi bu işlemi adım adım nasıl gerçekleştirebileceğimize bakalım.

1. Ortamı Hazırlama
Öncelikle Python’ın yüklü olduğundan emin olun. Ardından terminal veya komut satırında aşağıdaki komutu kullanarak OpenCV kütüphanesini yükleyin:
pip install opencv-python

2. Görüntüyü Yükleme ve Ön İşleme
Bir görüntüyü işleyebilmek için öncelikle onu okumanız gerekir. Aşağıdaki kod parçası bir resmi okur ve gri tonlamaya çevirir:
import cv2
img = cv2.imread('resim.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

3. Gürültü Azaltma
Gürültüyü azaltmak, kenar tespitinin daha sağlıklı sonuç vermesi için önemlidir. Bunun için genellikle Gaussian Blur filtresi kullanılır:
blur = cv2.GaussianBlur(gray, (5,5), 0)

4. Canny Kenar Algoritması ile Kenarları Tespit Etme
Artık kenar tespiti yapmaya hazırsınız. Canny algoritması, belirlediğiniz alt ve üst eşik değerlerine göre kenarları belirler:
edges = cv2.Canny(blur, 50, 150)

5. Sonuçları Görüntüleme
Tespit edilen kenarları bir pencere açarak görüntüleyebilirsiniz:
cv2.imshow('Kenarlar', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

İpuçları ve Dikkat Edilmesi Gerekenler
Kullandığınız eşik değerleri, sonuçların kalitesini doğrudan etkiler. Farklı görüntüler için bu değerleri değiştirerek en iyi sonucu bulabilirsiniz. Ayrıca, OpenCV'nin sunduğu diğer kenar tespit yöntemlerini de inceleyerek projenize en uygun olanı seçebilirsiniz.

Sonuç
Python ve OpenCV kullanarak kenar tespiti işlemi oldukça kolay ve etkilidir. Bu yazıda temel adımları öğrendiniz. Artık kendi projelerinizde farklı görüntüler üzerinde kenar tespiti uygulayabilir ve daha gelişmiş görüntü işleme tekniklerine adım atabilirsiniz. Görüntü işleme ile ilgili yeni teknikleri öğrenmek için OpenCV dokümantasyonunu incelemenizi tavsiye ederim.

3.

29 Haziran 2025 Pazar

Yapay Zeka Destekli Kod Tamamlama Araçları: Copilot ve Alternatifleri İncelemesi

Yapay Zeka ile Kod Yazmanın Yeni Dönemi

Son yıllarda yazılım geliştirme süreçlerine hız ve verimlilik kazandıran en büyük yeniliklerden biri, yapay zeka destekli kod tamamlama araçlarıdır. Özellikle GitHub Copilot gibi araçlar, geliştiricilerin kod yazarken zamandan tasarruf etmesine ve daha güvenli, tutarlı kodlar üretmesine yardımcı olmaktadır. Bu yazımızda, Copilot’un sunduğu avantajlar ile birlikte, günümüzde öne çıkan alternatiflerini inceleyeceğiz. Ayrıca, bu araçların çalışma prensipleri ve yazılım geliştiricilere sunduğu katkılara da değineceğiz.

GitHub Copilot Nedir ve Nasıl Çalışır?

GitHub Copilot, Microsoft ve OpenAI iş birliğiyle geliştirilen, Visual Studio Code başta olmak üzere birçok popüler kod editörüyle entegre çalışabilen bir yapay zeka asistanıdır. Copilot, yazmakta olduğunuz kodu analiz ederek, sonraki satırları veya fonksiyonları tahmin edebilir ve otomatik olarak tamamlayabilir. Büyük ölçekli açık kaynak kod havuzlarından ve yazılım belgelerinden öğrenen bu model, farklı programlama dillerinde yüksek doğrulukla öneriler sunar. Sadece klasik kod tamamlama değil, aynı zamanda yorum satırlarından yola çıkarak fonksiyonlar, algoritmalar ve testler de üretebilir.

Copilot’un Avantajları

Copilot’un en büyük avantajı, kod yazma hızını ciddi anlamda artırmasıdır. Özellikle tekrar eden kod bloklarını otomatik olarak tamamlaması, karmaşık algoritmaları hızlıca önerebilmesi ve hata yapma riskini azaltması ile öne çıkar. Ayrıca yeni başlayanlar için de öğretici bir rol üstlenerek, kodun nasıl yazılması gerektiği konusunda yol göstericidir. Geliştiriciler, kod düzenlerini ve en iyi uygulamaları Copilot sayesinde hızlıca öğrenebilirler.

Popüler Alternatifler: Tabnine, Amazon CodeWhisperer ve Diğerleri

Copilot piyasada en çok bilinen araç olsa da, yalnız değildir. Tabnine, Amazon CodeWhisperer ve Replit Ghostwriter gibi araçlar da benzer şekilde yapay zeka tabanlı kod tamamlama hizmetleri sunar. Tabnine, farklı programlama dilleriyle uyumlu çalışabilen bir modeldir ve kullanıcıya özel olarak önerilerini kişiselleştirebilir. Amazon CodeWhisperer ise AWS ekosistemine entegre edilmiş olup, bulut tabanlı uygulamalarda büyük kolaylık sağlar. Replit Ghostwriter ise özellikle eğitim alanında ve hızlı prototipleme süreçlerinde tercih edilmektedir.

Yapay Zeka Destekli Kod Tamamlamanın Sınırları ve Güvenlik

Her ne kadar bu araçlar geliştiricilere büyük kolaylıklar sağlasa da, bazı sınırları da bulunmaktadır. Kodun her zaman güvenli ve hatasız olacağı garanti edilmez. Özellikle hassas projelerde, önerilen kod satırlarının manuel olarak gözden geçirilmesi büyük önem taşır. Ayrıca, kaynak kodunun gizliliği ve veri güvenliği gibi konulara dikkat edilmelidir. Çoğu platform, kullanıcı kodlarını kendi sunucularında analiz ettiği için, şirket politikalarına ve gizlilik sözleşmelerine uygun hareket edilmelidir.

Kimler İçin Uygun?

Yapay zeka destekli kod tamamlama araçları, hem profesyonel yazılımcılar hem de yazılım öğrenmeye yeni başlayanlar için uygundur. Büyük ölçekli projelerde zamandan kazanmak, kod kalitesini artırmak ve hata oranını düşürmek isteyen herkes bu araçlardan faydalanabilir. Ayrıca, yeni bir programlama dilini öğrenen geliştiriciler için de büyük bir destekleyici unsur olabilir.

Sonuç ve Gelecekte Beklenenler

Yapay zeka ile kod tamamlayıcı araçlar yazılım geliştirme dünyasında yeni bir standart haline gelmektedir. Hem zaman kazandıran hem de kod kalitesini artıran bu sistemler, gelecekte daha da gelişerek yazılım üretim süreçlerinin vazgeçilmez bir parçası olacak gibi görünüyor. Her ne kadar insan gözetimi ve manuel kontrol gerektirse de, üretkenliği artırma potansiyeliyle teknolojinin önemli bir evrimi olarak öne çıkıyor.

28 Haziran 2025 Cumartesi

Yapay Zeka Destekli Chatbot Nasıl Kurulur? Adım Adım Rehber

Giriş

Teknolojinin hızla gelişmesiyle birlikte, yapay zeka destekli chatbotlar hem bireysel girişimciler hem de kurumsal firmalar için vazgeçilmez araçlar haline geldi. Chatbotlar, müşteri hizmetlerinden e-ticarete, eğitimden sağlığa kadar birçok alanda kullanıcı deneyimini iyileştiriyor. Peki, kendi yapay zeka destekli chatbot’unuzu nasıl kurabilirsiniz? Bu rehberde, güncel ve ücretsiz araçlar kullanarak adım adım chatbot oluşturmanın yollarını sade bir dille anlatacağız.

Chatbot Nedir?

Chatbotlar, kullanıcılarla metin veya sesli olarak etkileşim kurabilen, belirli komutlara ve sorulara yanıt verebilen yazılım uygulamalarıdır. Yapay zeka (AI) ve doğal dil işleme (NLP) teknolojileri sayesinde, chatbotlar artık daha akıllı, daha hızlı ve daha insan gibi cevaplar sunabiliyor. Modern chatbotlar, müşteri desteğinden alışverişe kadar geniş bir yelpazede kullanılabiliyor.

Chatbot Kurmak İçin Gerekenler

Bir chatbot kurmak için teknik bilgiye sahip olmanız gerekmez. Son yıllarda geliştirilen kullanıcı dostu platformlar sayesinde herkes kolayca kendi chatbot’unu oluşturabilir. İhtiyacınız olan temel şeyler şunlardır:

  • Bir chatbot platformu (ör. Dialogflow, Microsoft Bot Framework, ChatGPT API, ManyChat vb.)
  • Bir web sitesi veya sosyal medya hesabı (entegre etmek için)
  • Temel bir senaryo veya kullanıcı akışı planı

Adım Adım Chatbot Kurulumu

1. Hedefinizi Belirleyin: Chatbot’unuzun ne amaçla kullanılacağını netleştirin. Müşteri desteği mi, ürün tavsiyesi mi yoksa bilgi tabanı mı sunacak? Bu adım, sonraki tüm süreçleri etkileyecektir.

2. Platform Seçin: Teknik bilginiz yoksa, kullanıcı dostu arayüz sunan Dialogflow veya ManyChat gibi platformları tercih edebilirsiniz. Gelişmiş çözümler için OpenAI ChatGPT API’sini de kullanabilirsiniz.

3. Hesap Oluşturun ve Giriş Yapın: Seçtiğiniz platformda ücretsiz bir hesap açarak giriş yapın. Genellikle e-posta veya Google hesabınızla kolayca kayıt olabilirsiniz.

4. Chatbot’unuzun Akışını Tasarlayın: Platformun sunduğu araçlarla, kullanıcıdan gelen mesajlara nasıl cevap verileceğini sürükle-bırak veya kodlama yöntemiyle tanımlayın. Örneğin, “Sıkça Sorulan Sorular” bölümü veya “Canlı Destek” butonu ekleyebilirsiniz.

5. Yapay Zeka ve NLP Özelliklerini Aktif Edin: Chatbot’unuzun daha akıllı cevaplar verebilmesi için NLP (Doğal Dil İşleme) modüllerini aktif edin. Dialogflow gibi platformlarda, “intent” ve “entity” tanımlamaları yaparak chatbot’un farklı cümle yapılarını anlamasını sağlayabilirsiniz.

6. Test Edin ve Entegre Edin: Chatbot’unuzu platform içindeki test paneliyle deneyin. Hataları veya eksik cevapları tespit edin ve düzeltin. Sonrasında, chatbot’unuzu web sitenize, WhatsApp veya Facebook Messenger gibi sosyal medya mecralarınıza kolayca entegre edebilirsiniz.

Chatbot’u Geliştirirken Dikkat Edilmesi Gerekenler

Chatbot’unuzun kullanıcı dostu, hızlı ve doğru cevaplar vermesi için düzenli olarak test yapmalı ve geri bildirimleri dikkate almalısınız. Ayrıca, kişisel verilerin korunması ve gizlilik politikalarına da dikkat etmeniz önemlidir. Kullanıcıların verilerini nasıl sakladığınız ve kullandığınız konusunda şeffaf olun.

Güncel Chatbot Trendleri

2024 yılında chatbot teknolojilerinde öne çıkan en önemli yenilikler arasında, çoklu dil desteği, sesli yanıt sistemleri ve GPT-4 tabanlı yapay zeka modelleri yer alıyor. Ayrıca, otomasyon ve kişiselleştirme özellikleri sayesinde chatbotlar müşterilere özel kampanyalar ve öneriler sunabiliyor.

Sonuç

Yapay zeka destekli chatbot kurmak, günümüzde teknik bilgiye sahip olmasanız bile oldukça kolaylaştı. Doğru platformu seçip temel akışınızı planladıktan sonra, chatbot’unuzu kısa sürede kullanıma hazır hale getirebilirsiniz. Unutmayın, en iyi chatbotlar sürekli güncellenen ve geliştirilenlerdir. Siz de şimdi bu adımları takip ederek kendi akıllı chatbot’unuzu oluşturabilirsiniz!

3.

27 Haziran 2025 Cuma

VMware Workstation UUID Bios Güncelleme VMX Dosyası

 Bir VM'in full clone yöntemiyle kopyalama yaptıktan sonra bazı kısımların kontrol edilmesi ve düzenlenmesi gerekiyor. Özellikle MAC adresi, buradaki gibi bios ve locaiton ID'leri gibi. Buraların benzersiz olması gerekiyor. Hatta bu satırları silmek bile öneriliyor internette. Yoksa clone alınmış vm'ler aynı anda çalıştırılamıyor. Bir çeşit hata ile karşılaşıyorsunuz.

Çözmek için çok uğraştırdı, şöyle not olarak kalsın. Daha fazla detay yazmayacağım :)

UUID Adresi VM

Yapay Zeka ile Görüntüden Metin Tanıma (OCR) Nasıl Yapılır?

Yapay Zeka ile Görüntüden Metin Tanıma (OCR) Nedir?

Dijital dönüşüm çağında, belgelerin dijital ortama taşınması ve arşivlenmesi büyük önem kazandı. Özellikle basılı dokümanlardaki metinlerin bilgisayara aktarılması için en sık kullanılan yöntemlerden biri de Optik Karakter Tanıma, yani kısaca OCR (Optical Character Recognition) teknolojisidir. Son yıllarda, yapay zeka tabanlı OCR çözümleri ile metin tanıma işlemleri çok daha hızlı ve doğru şekilde gerçekleştirilebiliyor.

Geleneksel OCR teknolojileri, karakterleri belirli şablonlara göre tanırken; yapay zeka destekli OCR sistemleri ise öğrenme yetenekleri sayesinde el yazısı, karmaşık fontlar ve düşük kaliteli görsellerde bile yüksek başarı elde edebiliyor. Bu yazıda, güncel bir teknoloji olarak yapay zeka ile görüntüden metin tanıma işleminin nasıl yapılacağını adım adım anlatacağız.

Yapay Zekalı OCR Araçları Nelerdir?

Günümüzde ücretsiz ve ücretli birçok yapay zeka tabanlı OCR aracı bulunmaktadır. En popülerlerinden bazıları şunlardır:

  • Tesseract OCR: Google tarafından geliştirilen ve açık kaynak kodlu olan bu yazılım, Python gibi programlama dilleriyle kolayca entegre edilebilir.
  • Google Cloud Vision API: Bulut tabanlı ve güçlü bir görsel analiz hizmetidir. Gelişmiş metin tespiti yapabilir.
  • Microsoft Azure Computer Vision: Microsoft’un bulut tabanlı çözümü, çoklu dil desteği ve yüksek doğruluk oranı ile dikkat çeker.

Bu araçlar dışında, Adobe Scan, ABBYY FineReader gibi son kullanıcıya yönelik yazılımlar da yaygın olarak kullanılmaktadır.

Tesseract ile Python'da Görüntüden Metin Tanıma Nasıl Yapılır?

Eğer biraz programlama bilginiz varsa, ücretsiz ve açık kaynaklı Tesseract OCR kütüphanesini kullanarak kendi OCR uygulamanızı geliştirebilirsiniz. Aşağıda, Python programlama diliyle temel bir metin tanıma işleminin nasıl yapılacağı anlatılmıştır.

Öncelikle, sisteminize Tesseract yazılımını kurmanız gerekir. Ardından, pytesseract adlı Python paketini yükleyerek işlemlere başlayabilirsiniz:

pip install pytesseract pillow

Kurulum tamamlandıktan sonra şu adımları izleyebilirsiniz:

  1. Görüntüyü Yükleyin: Metin tanıma yapılacak görseli Python ile açın.
  2. OCR İşlemi Uygulayın: Görseli pytesseract ile analiz edin.
  3. Sonucu Alın: Tanınan metni ekrana ya da bir dosyaya yazdırın.

Örnek bir kod parçası şu şekildedir:

from PIL import Image
import pytesseract

img = Image.open('ornek_gorsel.png')
metin = pytesseract.image_to_string(img, lang='tur')
print(metin)

Yukarıdaki kodda, 'ornek_gorsel.png' adlı bir görseldeki Türkçe metinler otomatik olarak tanınır. Dilerseniz farklı dillerde de OCR işlemi gerçekleştirebilirsiniz.

Yapay Zeka ile OCR’da Dikkat Edilmesi Gerekenler

Yapay zeka tabanlı OCR uygulamaları, yüksek doğruluk oranına sahip olsa da bazı noktalarda dikkatli olunmalıdır. Görsel kalitesi, ışık, font tipi ve arka plan gibi unsurlar tanıma başarısını doğrudan etkiler. Ayrıca, el yazısı veya karmaşık belgelerde hata payı artabilir. Bu nedenle, görüntülerin mümkün olduğunca kaliteli ve net olması önerilir.

Son yıllarda geliştirilen derin öğrenme tabanlı OCR modelleri, büyük veri setleriyle eğitilerek hata oranlarını önemli ölçüde düşürmüştür. Yine de, otomatik tanıma sonrası manuel kontrol yapmak her zaman güvenli bir yaklaşımdır.

Sonuç

Yapay zeka destekli OCR teknolojisi, belgelerin dijitalleştirilmesi ve işlenmesi sürecinde büyük kolaylıklar sunmaktadır. Açık kaynaklı Tesseract gibi araçlarla, kendi OCR projelerinizi kolaylıkla geliştirebilirsiniz. Kaliteli görseller ve doğru araç seçimi ile yüksek doğruluk oranına ulaşmak mümkündür. Dijitalleşme yolunda bir adım daha atmak için siz de yapay zeka tabanlı OCR teknolojilerinden yararlanabilirsiniz.