Python etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Python etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

12 Haziran 2025 Perşembe

Yapay Zeka Destekli Görüntü Tanıma Sistemleri Nasıl Kurulur? Adım Adım Rehber

Giriş: Yapay Zeka ile Görüntü Tanımanın Gücü

Günümüzde yapay zeka (YZ) teknolojileri, hayatımızın pek çok alanında devrim yaratıyor. Özellikle görüntü tanıma sistemleri, otomotivden sağlığa, güvenlikten perakendeye kadar farklı sektörlerde kullanılmakta. Peki, kendi yapay zeka destekli görüntü tanıma sisteminizi nasıl kurabilirsiniz? Bu yazıda, temel adımlardan başlayarak bir görüntü tanıma uygulamasının nasıl geliştirileceğini sade ve anlaşılır bir şekilde anlatacağım.

Görüntü Tanıma Nedir ve Nerelerde Kullanılır?

Görüntü tanıma, bilgisayarların resim ve videolardaki nesne, yüz, yazı gibi ögeleri otomatik olarak algılayıp sınıflandırmasını sağlayan bir yapay zeka alanıdır. Özellikle derin öğrenme algoritmaları sayesinde, akıllı telefonlarda yüz tanıma, otomobillerde şerit takibi ve hastanelerde tıbbi görüntü analizi gibi uygulama alanlarına sahiptir. Bu sistemler, büyük miktarda veriyi analiz ederek karar verme süreçlerini hızlandırır ve insan hatasını minimize eder.

Görüntü Tanıma Sistemi Kurulumunun Temel Adımları

Kendi görüntü tanıma sisteminizi kurmak için aşağıdaki adımları takip edebilirsiniz:

  1. Veri Toplama: İlk adım, modelin eğitilmesi için yeterli sayıda ve çeşitlilikte görsel veri toplamaktır. Bu veriler, genellikle internetten açık kaynaklar aracılığıyla veya kendi çektiğiniz fotoğraflarla elde edilebilir.
  2. Veri Ön İşleme: Toplanan görsellerin boyutlandırılması, normalleştirilmesi ve etiketlenmesi işlemleri yapılır. Bu aşama, modelin daha doğru sonuçlar üretmesini sağlar.
  3. Model Seçimi: Görüntü tanıma için genellikle Convolutional Neural Networks (CNN) tabanlı derin öğrenme modelleri tercih edilir. Kendi modelinizi sıfırdan oluşturabilir veya hazır bir model (örneğin, ResNet, MobileNet, VGG) kullanabilirsiniz.
  4. Modelin Eğitilmesi: Seçilen model, hazırladığınız veri seti ile eğitilir. Bu işlem sırasında model, görsellerdeki desenleri ve özellikleri öğrenir.
  5. Modelin Test Edilmesi: Eğitim sonrası model, daha önce görmediği test verileriyle sınanır. Böylece gerçek hayatta ne kadar başarılı olacağı ölçülür.
  6. Dağıtım ve Entegrasyon: Başarılı bir sonuç elde ettiyseniz, modelinizi bir mobil uygulama, web servisi ya da masaüstü programı olarak entegre edebilirsiniz.

Popüler Yazılım Araçları ve Kütüphaneler

Görüntü tanıma projelerinde en çok tercih edilen yazılım araçları arasında Python dili ve TensorFlow, PyTorch, Keras gibi derin öğrenme kütüphaneleri yer alır. Özellikle TensorFlow ve Keras, hızlı prototipleme ve kolay kullanım açısından öne çıkar. Google Colab gibi ücretsiz bulut tabanlı ortamları kullanarak güçlü donanımlara ihtiyaç duymadan eğitim süreçlerinizi gerçekleştirebilirsiniz.

İpuçları ve Dikkat Edilmesi Gerekenler

Başarılı bir görüntü tanıma sistemi kurmak için aşağıdaki noktalara dikkat etmelisiniz:

  • Veri çeşitliliği: Farklı ışık, açı ve arka plana sahip görseller kullanın.
  • Overfitting: Modelinizin sadece eğitim verisini ezberlemesini önlemek için veri artırma (data augmentation) tekniklerini uygulayın.
  • Küçük veri setleriyle çalışıyorsanız transfer öğrenme (transfer learning) yöntemlerinden yararlanın.
  • Modelinizi sürekli güncelleyerek yeni verilerle yeniden eğitin.

Sonuç: Kendi Görüntü Tanıma Sisteminizi Geliştirin!

Yapay zeka destekli görüntü tanıma sistemleri, günümüzde hem bireysel hem de kurumsal projelerde büyük avantajlar sağlıyor. Bu rehberde, temel adımlar ve dikkat edilmesi gereken noktalarla kendi sisteminizi geliştirmeye başlayabilirsiniz. Unutmayın, doğru veri ve uygun model seçimi başarının anahtarıdır. Denemeler yaparak ve öğrendiklerinizi uygulayarak, kısa sürede etkili bir görüntü tanıma sistemi oluşturabilirsiniz.

3.

3 Haziran 2025 Salı

Yapay Zeka Destekli Görüntü İşleme: Python ve OpenCV ile Nesne Tespiti Nasıl Yapılır?

Giriş

Günümüzde yapay zeka ve makine öğrenmesi teknolojileri, görüntü işleme alanında devrim yaratmaya devam ediyor. Özellikle Python programlama dili ve OpenCV kütüphanesi kullanılarak geliştirilen nesne tespit uygulamaları, hem amatörler hem de profesyoneller için büyük kolaylık sağlıyor. Bu yazıda, Python ve OpenCV kullanarak temel seviyede nesne tespiti nasıl yapılır, adım adım anlatacağız. Ayrıca bu teknolojilerin günlük hayatta ve endüstride nasıl kullanıldığından da bahsedeceğiz.

OpenCV ve Python: Kurulum ve Hazırlık

Nesne tespiti için öncelikle Python ortamınızın hazır olması gerekiyor. Python’un son sürümünü python.org üzerinden indirebilirsiniz. Ardından, OpenCV kütüphanesini yüklemek için terminal veya komut istemcisine aşağıdaki komutu yazmanız yeterlidir:

pip install opencv-python

Ek olarak, görsel işlemeleri ve matematiksel hesaplamaları kolaylaştıracak NumPy kütüphanesini de yüklemeniz tavsiye edilir:

pip install numpy

Bir Görüntüde Nesne Tespiti Adımları

Nesne tespiti, bir görüntüdeki belirli nesnelerin yerini ve sınırlarını otomatik olarak bulmayı amaçlayan bir süreçtir. OpenCV ile temel nesne tespiti için şu adımlar izlenir:

  1. Görüntünün yüklenmesi ve ön işleme tabi tutulması (gri tonlama, bulanıklaştırma vb.).
  2. Kenar belirleme (Canny algoritması gibi yöntemlerle).
  3. Kontur bulma ve nesnelerin sınırlanması (bounding box çizme).

Aşağıda örnek bir Python kod bloğu paylaşıyoruz:

import cv2
import numpy as np

# Görüntüyü yükle
img = cv2.imread('ornek.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blur, 50, 150)

# Konturları bul
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# Konturların etrafına dikdörtgen çiz
for cnt in contours:
    x, y, w, h = cv2.boundingRect(cnt)
    cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.imshow('Nesne Tespiti', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Bu kod, ‘ornek.jpg’ adlı bir görseldeki nesneleri kenarlarını tespit edip, çevresine yeşil renkli dikdörtgenler çizer. Kendi görsellerinizle test edebilirsiniz.

Günlük Hayatta ve Endüstride Kullanım Alanları

Python ve OpenCV ile geliştirilen nesne tespit sistemleri, birçok sektörde aktif olarak kullanılmaktadır. Güvenlik kameralarında hareketli nesne tespiti, otonom araçlarda trafik işaretlerinin tanınması, sağlık sektöründe medikal görüntülerin analizi ve tarımda ürün sayımı gibi örnekler verilebilir. Ayrıca, akıllı telefon uygulamalarında yüz tanıma ve artırılmış gerçeklik teknolojileri de bu sistemler sayesinde mümkün olmaktadır.

Yapay zeka destekli nesne tespiti, veri toplama, analiz ve karar verme süreçlerinde büyük kolaylık sağlar. Özellikle büyük veri ile çalışan şirketler için, hızlı ve otomatik analizler sayesinde verimlilik artışı sağlanır.

Sonuç

Python ve OpenCV kullanarak nesne tespiti yapmak, günümüzde oldukça erişilebilir ve etkili bir yöntem haline gelmiştir. Bu yazıda bahsettiğimiz temel adımlar ile siz de kendi projelerinizde nesne tespiti uygulamaları geliştirebilir, farklı alanlarda bu teknolojinin avantajlarından faydalanabilirsiniz. İleri seviye nesne tespiti için derin öğrenme tabanlı yöntemlere (ör. YOLO, SSD) de göz atmanızı öneririz. Görüntü işleme alanında güncel kalmak için yeni gelişmeleri takip etmeyi unutmayın!

31 Mayıs 2025 Cumartesi

Yapay Zeka Destekli Ses Tanıma Sistemleri Nasıl Kurulur? Adım Adım Rehber

Giriş: Yapay Zeka ve Ses Tanıma Sistemleri

Günümüzde yapay zeka teknolojilerinin hızla gelişmesiyle birlikte, ses tanıma sistemleri de birçok alanda yaygın olarak kullanılmaya başladı. Akıllı ev asistanlarından müşteri hizmetlerine, otomobil içi kontrollerden sağlık uygulamalarına kadar pek çok sektörde sesli komutlarla çalışan sistemler, kullanıcı deneyimini önemli ölçüde artırıyor. Bu yazıda, kendi yapay zeka destekli ses tanıma sisteminizi nasıl kurabileceğinizi, adım adım ve anlaşılır bir şekilde ele alacağız.

1. Ses Tanıma Sistemlerinin Temelleri

Ses tanıma teknolojisi, insan sesini analiz ederek konuşma komutlarını yazılı metne dönüştürmeyi hedefler. Bu sistemler, öncelikle ses dalgalarını dijital verilere çevirir, ardından makine öğrenimi veya derin öğrenme algoritmaları kullanarak bu verileri analiz eder. Sonuç olarak, kullanıcıdan alınan ses komutları doğru bir şekilde anlaşılır ve işlenir. Günümüzde popüler ses tanıma API'ları arasında Google Speech-to-Text, Microsoft Azure Speech ve IBM Watson Speech to Text gibi çözümler yer alıyor.

2. Gerekli Araçlar ve Ortamın Hazırlanması

Kendi ses tanıma sisteminizi kurmak için ihtiyacınız olan temel bileşenler şunlardır:

  • Bir programlama dili: Python, ses tanıma uygulamaları için yaygın olarak tercih edilir.
  • Ses tanıma kütüphaneleri: SpeechRecognition, PyAudio, vosk gibi açık kaynaklı kütüphaneler başlangıç için idealdir.
  • Yapay zeka modelleri: Derin öğrenme tabanlı hazır modeller veya kendi eğittiğiniz modeller kullanılabilir.

Ayrıca, ortamınızda Python ve ilgili kütüphanelerin kurulu olduğundan emin olmalısınız. Terminal veya komut satırında aşağıdaki komutları çalıştırarak gerekli kütüphaneleri yükleyebilirsiniz:

pip install SpeechRecognition pyaudio vosk

3. Basit Bir Ses Tanıma Uygulaması Geliştirme

Aşağıda, Python ile çalışan basit bir ses tanıma uygulamasının örnek kodunu bulabilirsiniz. Bu örnekte, mikrofonunuzdan gelen sesi kaydedip metne dönüştüren bir sistem kuracağız:

import speech_recognition as sr

r = sr.Recognizer()
with sr.Microphone() as source:
    print("Lütfen konuşun:")
    audio = r.listen(source)

try:
    print("Algılanan metin: " + r.recognize_google(audio, language="tr-TR"))
except sr.UnknownValueError:
    print("Ses anlaşılamadı.")
except sr.RequestError as e:
    print(f"Servise erişilemedi; {e}")

Bu kod örneği, Google'ın ücretsiz Speech-to-Text API'sini kullanarak Türkçe konuşmaları metne dönüştürür. Daha gelişmiş uygulamalar geliştirmek için Vosk gibi çevrimdışı çalışan modelleri veya kendi verisetinizle eğiteceğiniz özel modelleri de tercih edebilirsiniz.

4. Güvenlik ve Gizlilik Konuları

Ses tanıma sistemleri geliştirirken kullanıcı verilerinin gizliliğine ve güvenliğine dikkat etmek çok önemlidir. Özellikle bulut tabanlı servisler kullanıyorsanız, ses verilerinin güvenli bir şekilde iletildiğinden ve saklandığından emin olun. Ayrıca, kullanıcıdan açık rıza almak ve verileri sadece gerekli amaçlar için toplamak yasal bir zorunluluktur.

5. Sonuç ve Öneriler

Yapay zeka destekli ses tanıma sistemleri, hem bireysel hem de kurumsal uygulamalarda büyük kolaylıklar sağlar. Python ve açık kaynak kütüphaneler sayesinde, kendi sesli komut sisteminizi kolayca geliştirebilirsiniz. Geliştirmeye başlarken küçük uygulamalarla pratik yapmanızı, ardından ihtiyaçlarınıza uygun daha karmaşık çözümler üretmenizi tavsiye ederiz. Unutmayın, sesli komut sistemleri geleceğin teknolojisi olarak her geçen gün daha fazla hayatımıza entegre oluyor.

29 Mayıs 2025 Perşembe

Yapay Zekâ ile Görüntü İşleme: Python ve OpenCV ile Nesne Tespiti Nasıl Yapılır?

Giriş: Yapay Zekâ ve Görüntü İşlemede Yeni Dönem

Günümüz teknolojisinde yapay zekâ ve görüntü işleme, birbirinden ayrılmaz iki önemli alan olarak öne çıkıyor. Özellikle akıllı cihazlar, otonom araçlar ve güvenlik sistemlerinde görüntü işleme teknikleri her geçen gün daha da gelişiyor. Python programlama dili ve OpenCV kütüphanesi, bu alandaki projelerde en çok tercih edilen araçlar arasında yer alıyor. Bu makalede, Python ve OpenCV kullanarak temel seviyede nesne tespiti nasıl yapılır adım adım anlatılacaktır.

Python ve OpenCV Kurulumu

İlk olarak, Python yüklü olmayan kullanıcıların resmi python.org sitesinden Python son sürümünü yüklemeleri gerekmektedir. Ardından, OpenCV kütüphanesini yüklemek için komut istemcisine aşağıdaki satırı yazabilirsiniz:

pip install opencv-python

Kurulum tamamlandıktan sonra, OpenCV kütüphanesini projeye dahil etmek için import cv2 komutunu kullanmak yeterlidir. Ayrıca, numpy gibi temel bilimsel kütüphaneleri de yüklemek avantaj sağlayacaktır.

Görüntü Okuma ve Temel İşlemler

OpenCV ile bir görüntüyü okumak oldukça kolaydır. Aşağıdaki örnek kodda, bir resmi okuma ve ekranda gösterme işlemi yapılmaktadır:

import cv2

image = cv2.imread('ornek.jpg')
cv2.imshow('Goruntu', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Bu temel adım, nesne tespiti işlemlerinin başlangıcını oluşturur. Görüntü üzerinde işlem yapmadan önce, genellikle resmi gri tonlara çevirmek ve gürültü azaltma teknikleri uygulamak gerekir.

Kenar Algılama ve Nesne Tespiti

Nesne tespiti için en popüler yöntemlerden biri, Canny Kenar Algılama algoritmasıdır. Bu algoritma, görüntüdeki belirgin kenarları ortaya çıkarır. Kenarların tespiti sonrasında, contour (kontur) bulma işlemiyle nesnelerin sınırları belirlenebilir. İşte örnek bir kod:

import cv2

image = cv2.imread('ornek.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200)
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(image, contours, -1, (0,255,0), 2)
cv2.imshow('Nesne Tespiti', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Bu kod, resim üzerindeki nesneleri yeşil renkli çizgilerle işaretler. Farklı görüntülerde, parametreleri değiştirerek daha hassas sonuçlar elde edebilirsiniz. Bu temel mantık, yüz tespiti, araç tespiti gibi daha ileri uygulamaların da temelini oluşturur.

Gerçek Hayatta Kullanım Alanları

Python ve OpenCV ile nesne tespiti, güvenlik kameralarında hareket algılama, otoyollarda araç sayımı, endüstriyel üretimde kalite kontrol ve sağlık sektöründe medikal görüntü analizi gibi çok sayıda alanda kullanılmaktadır. Tüm bu uygulamalar, Python’un esnek yapısı ve OpenCV’nin geniş fonksiyon yelpazesi sayesinde kolayca geliştirilebilmektedir.

Sonuç: Kendi Nesne Tespit Sisteminizi Kurun

Bu yazıda, Python ve OpenCV kullanarak temel nesne tespiti işlemlerinin nasıl gerçekleştirileceğini öğrendik. İster bir öğrenci, ister bir profesyonel olun, bu yöntemlerle kendi nesne tespit projelerinizi geliştirebilir, yapay zekâ ve görüntü işleme alanında kendinizi daha ileri seviyelere taşıyabilirsiniz. Unutmayın, sürekli pratik yaparak ve OpenCV’nin dökümantasyonunu inceleyerek daha karmaşık uygulamalara da kolayca geçiş yapabilirsiniz.

3.

28 Mayıs 2025 Çarşamba

Yapay Zeka ile Metin Analizi: Python’da Doğal Dil İşleme (NLP) Nasıl Yapılır?

Giriş: Doğal Dil İşleme Nedir?

Günümüzde yapay zeka ve makine öğrenmesi teknolojilerinin gelişmesiyle birlikte, metin tabanlı verilerin işlenmesi ve analiz edilmesi büyük önem kazandı. Doğal Dil İşleme (Natural Language Processing – NLP), bilgisayarların insan dilini anlamasına, yorumlamasına ve üretmesine imkan tanıyan bir yapay zeka dalıdır. Özellikle sosyal medya analizleri, müşteri yorumlarının incelenmesi ve akıllı asistanlar gibi birçok alanda NLP tekniklerinden faydalanılmaktadır. Bu yazıda, Python programlama dili kullanılarak temel düzeyde metin analizi nasıl yapılır, adım adım öğreneceğiz.

Neden Python ve Hangi Kütüphaneler Kullanılır?

Python, geniş kütüphane desteği ve kullanıcı dostu yapısı sayesinde veri bilimi ve yapay zeka projelerinde en çok tercih edilen dillerden biridir. Doğal dil işleme için Python’da NLTK (Natural Language Toolkit), spaCy ve TextBlob gibi popüler kütüphaneler bulunmaktadır. Bu kütüphaneler, metin temizleme, cümle ve kelime ayrıştırma, duygusal analiz, özetleme ve daha birçok işlemi kolayca gerçekleştirmemizi sağlar.

Adım Adım Temel Metin Analizi

1. Gerekli Kütüphanelerin Kurulumu

İlk olarak, projemizde kullanacağımız kütüphaneleri yüklememiz gerekir. Komut satırında aşağıdaki kodları kullanarak NLTK ve TextBlob’u kurabilirsiniz:

pip install nltk textblob

2. Metin Temizleme ve Hazırlık

Metin analizi yapmadan önce, elimizdeki veriyi temizlememiz gerekir. Bu işlem; noktalama işaretlerinin kaldırılması, küçük harfe dönüştürme, gereksiz boşlukların silinmesi gibi adımları içerir. Python’da bu işlemleri kolaylıkla gerçekleştirebiliriz.

import re
metin = "Python ile Metin Analizi! NLP, günümüzün yükselen teknolojilerindendir."
metin = metin.lower() # Küçük harfe çevir
metin = re.sub(r'[^\w\s]', '', metin) # Noktalama işaretlerini kaldır
print(metin)

3. Tokenizasyon (Kelime ve Cümle Ayırma)

Tokenizasyon, metni kelime veya cümlelere ayırma işlemidir. Bu adım, metnin daha detaylı analiz edilebilmesi için oldukça önemlidir. NLTK kütüphanesi ile tokenizasyon işlemini şu şekilde yapabilirsiniz:

import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize, sent_tokenize
kelimeler = word_tokenize(metin)
cumleler = sent_tokenize(metin)
print(kelimeler)
print(cumleler)

4. Duygu Analizi (Sentiment Analysis)

Duygu analizi, bir metnin olumlu, olumsuz veya nötr olup olmadığını tespit etmeye yarar. Özellikle müşteri değerlendirmeleri ve sosyal medya analizlerinde sıkça kullanılır. TextBlob kütüphanesiyle hızlıca duygu analizi yapabilirsiniz:

from textblob import TextBlob
yorum = TextBlob("Bu ürün gerçekten mükemmel, çok memnunum!")
print(yorum.sentiment)

Yukarıdaki kodun çıktısı, metnin duygu puanını ve nesnelliğini gösterir. Pozitif değerlere sahip sonuçlar, olumlu bir metni işaret eder.

İleri Seviye: Özetleme ve Anahtar Kelime Çıkarımı

Daha gelişmiş metin analizlerinde metin özetleme ve anahtar kelime çıkarımı oldukça popülerdir. Bunun için spaCy veya gensim gibi ek kütüphaneler kullanabilirsiniz. Bu tür işlemler, büyük metinlerin hızlıca özetlenmesini ve içerikteki önemli başlıkların bulunmasını sağlar. Ayrıca, makine öğrenmesi tabanlı modeller ile daha karmaşık analizler de gerçekleştirilebilir.

Sonuç: Kendi NLP Projenize Başlamak

Python ile doğal dil işleme, hem başlangıç seviyesindeki kullanıcılar hem de ileri düzey geliştiriciler için oldukça erişilebilirdir. Küçük bir blog sitesinden büyük veri analiz projelerine kadar birçok alanda kolayca uygulanabilir. Bu yazıda bahsedilen adımlar, NLP’ye giriş yapmak isteyenler için temel bir yol haritası sunmaktadır. Siz de kendi verileriniz üzerinde bu tekniklerle yeni projeler geliştirebilirsiniz.

27 Mayıs 2025 Salı

Yapay Zeka Destekli Ses Tanıma Sistemlerinin Kurulumu ve Kullanımı

Yapay Zeka Destekli Ses Tanıma Sistemlerine Giriş

Günümüzde yapay zeka ve makine öğrenimi teknolojilerinin hızla gelişmesiyle birlikte, ses tanıma sistemleri de hayatımızın önemli bir parçası haline geldi. Akıllı telefonlardan sanal asistanlara, müşteri hizmetlerinden otomasyon sistemlerine kadar birçok alanda sesli komutlarla etkileşim mümkündür. Peki, bu gelişmiş ses tanıma sistemlerini kendiniz kurmak ve kullanmak ister misiniz? Bu makalede, Python dili ve açık kaynaklı kütüphanelerle modern bir ses tanıma sisteminin nasıl kurulacağını adım adım anlatacağım.

Gerekli Araçlar ve Kütüphaneler

Yapay zeka destekli bir ses tanıma sistemi kurmak için öncelikle bazı yazılımlara ve kütüphanelere ihtiyacımız var. En popülerlerinden biri olan SpeechRecognition Python kütüphanesi, farklı ses tanıma motorlarını destekler ve kurulumu oldukça basittir. Ayrıca, mikrofon gibi bir giriş cihazı ve ses dosyalarını işlemek için PyAudio kütüphanesine de ihtiyaç duyacaksınız. Gerekli kurulumlar için terminal veya komut istemcisine aşağıdaki satırları yazabilirsiniz:

pip install SpeechRecognition
pip install pyaudio

PyAudio bazı sistemlerde ek paketler gerektirebilir. Eğer kurulumda hata alırsanız, işletim sisteminize uygun PyAudio kurulum rehberlerine göz atabilirsiniz.

Temel Bir Ses Tanıma Uygulaması Geliştirme

Kurulum tamamlandıktan sonra, ilk ses tanıma uygulamamızı yazmaya başlayabiliriz. Aşağıda, mikrofon üzerinden alınan sesi yazıya döken basit bir Python kodu örneği yer almakta:

import speech_recognition as sr

r = sr.Recognizer()

with sr.Microphone() as source:
    print("Lütfen konuşun:")
    audio = r.listen(source)

try:
    print("Duyulan: " + r.recognize_google(audio, language="tr-TR"))
except sr.UnknownValueError:
    print("Sesi anlayamadım.")
except sr.RequestError as e:
    print(f"Servise erişilemedi; {e}")

Bu kodu çalıştırdığınızda, mikrofonunuzdan gelen ses verisi Google'ın ücretsiz ses tanıma API'sı ile yazıya çevrilecektir. Kodda language="tr-TR" parametresi, tanımanın Türkçe yapılmasını sağlar. Alternatif olarak, farklı dillerde de tanıma yapabilirsiniz.

Gelişmiş Özellikler ve Otomasyon

Yapay zeka destekli ses tanıma sistemlerini sadece basit ses-yazı dönüştürmede değil, aynı zamanda komut algılama, veri analizi ve otomasyon işlemlerinde de kullanabilirsiniz. Örneğin, belirli bir anahtar kelime duyulduğunda bir programı başlatabilir veya sesli yanıt sistemleri oluşturabilirsiniz. Ayrıca, TensorFlow veya PyTorch gibi kütüphanelerle kendi özel ses modellerinizi eğitmek de mümkündür. Böylece daha yüksek doğrulukta ve özelleştirilebilir sistemler geliştirebilirsiniz.

Gizlilik açısından, bulut tabanlı API'lar yerine tamamen yerel çalışan modelleri tercih edebilir veya açık kaynak projeleri kullanabilirsiniz. Mozilla'nın geliştirdiği DeepSpeech gibi projeler, verilerinizin dışarıyla paylaşılmadan işlenmesini sağlar.

Sonuç ve Öneriler

Yapay zeka destekli ses tanıma sistemleri, günlük hayatta ve iş dünyasında kolaylık ve verimlilik sunar. Python ve açık kaynak kütüphaneler sayesinde kendi ses tanıma sistemlerinizi kolayca geliştirebilir, ihtiyacınıza göre özelleştirebilirsiniz. Kurulum sırasında karşılaşılan hataları çözmek için topluluk forumlarından ve resmi dokümantasyonlardan faydalanmayı unutmayın. Sesli komutlarla çalışan otomasyon sistemleri sayesinde, geleceğin teknolojilerini bugünden deneyimleyebilirsiniz.

26 Mayıs 2025 Pazartesi

Yapay Zeka Destekli Görüntü İşleme: Python ile OpenCV Kullanımı

Giriş: Yapay Zeka ve Görüntü İşlemenin Gücü

Günümüzde yapay zeka ve görüntü işleme teknolojileri, sağlık, otomotiv, güvenlik ve eğlence gibi birçok sektörde devrim yaratmaya devam ediyor. Özellikle Python programlama dili ve OpenCV kütüphanesi, hem amatörlerin hem de profesyonellerin karmaşık görüntü işleme projelerini kolaylıkla hayata geçirebilmesine imkan tanıyor. Bu yazıda, Python ve OpenCV kullanarak temel görüntü işleme işlemlerini nasıl yapabileceğinizi adım adım anlatacağım.

OpenCV Nedir ve Neden Kullanılır?

OpenCV (Open Source Computer Vision Library), özellikle görüntü işleme ve bilgisayarla görme uygulamaları için geliştirilmiş, açık kaynaklı ve ücretsiz bir kütüphanedir. Python ile birlikte kullanıldığında, fotoğraf filtrelemeden nesne tespitine, yüz tanımadan hareket takibine kadar pek çok işlemi kolayca yapabilmenizi sağlar. OpenCV'nin popülerliği, sunduğu zengin fonksiyonlar ve topluluk desteği sayesinde her geçen gün artıyor.

Kurulum ve Temel Kütüphaneler

OpenCV'yi Python ile kullanmak oldukça basittir. Öncelikle, aşağıdaki komutu terminal veya komut istemcisinde çalıştırarak kütüphaneyi yükleyebilirsiniz:

pip install opencv-python

Ayrıca, görüntüleri işlemek ve analiz etmek için genellikle numpy kütüphanesi de kullanılır. NumPy, diziler ve matrisler üzerinde hızlı işlemler yapmayı sağlar. Onu da aynı şekilde yükleyebilirsiniz:

pip install numpy

Temel Görüntü Okuma ve Görüntü Gösterme

OpenCV ile bir resmi okumak ve ekranda göstermek oldukça kolaydır. Aşağıdaki örnek kodda, bir resmi okuma ve gösterme işlemi yer almaktadır:

import cv2

# Görüntüyü oku
img = cv2.imread('ornek.jpg')

# Görüntüyü bir pencerede göster
cv2.imshow('Goruntu', img)

# Bir tuşa basılana kadar bekle
cv2.waitKey(0)
cv2.destroyAllWindows()

Bu kod, belirtilen dosya adındaki resmi okur ve yeni bir pencerede gösterir. cv2.waitKey(0) fonksiyonu, herhangi bir tuşa basılana kadar pencerenin açık kalmasını sağlar.

Görüntü Üzerinde Basit İşlemler

OpenCV, görüntü üzerinde renk değiştirme, kırpma, döndürme gibi temel işlemleri kolayca yapmanıza imkan verir. Örneğin, bir görüntüyü gri tonlara çevirmek için aşağıdaki kodu kullanabilirsiniz:

gri = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('Gri Goruntu', gri)
cv2.waitKey(0)
cv2.destroyAllWindows()

Ayrıca, görüntüyü yeniden boyutlandırmak için cv2.resize fonksiyonunu kullanabilirsiniz. Bu, özellikle makine öğrenmesi projelerinde farklı boyuttaki görüntüleri standartlaştırmak için çok faydalıdır.

Yapay Zeka ile Nesne Tespiti

OpenCV, yapay zeka tabanlı önceden eğitilmiş modeller ile nesne tespiti yapabilmektedir. Özellikle Haar Cascade gibi algoritmalar, yüz veya plaka tespiti gibi işlemler için oldukça etkilidir. Basit bir yüz tespiti için aşağıdaki örneği inceleyebilirsiniz:

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.imshow('Yuz Tespiti', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Bu örnekte, yüklenen görüntüdeki yüzler otomatik olarak tespit edilir ve dikdörtgen ile işaretlenir. Elbette daha gelişmiş nesne tespiti için derin öğrenme modelleri de kullanabilirsiniz.

Sonuç ve İleri Düzey Uygulamalar

Python ve OpenCV ile görüntü işleme, yapay zeka tabanlı uygulamalar geliştirmek için harika bir başlangıç noktasıdır. Temel okuma, gösterme ve nesne tespiti gibi işlemlerle başlayıp, zamanla derin öğrenme tabanlı görüntü sınıflandırma veya segmentasyon gibi ileri düzey uygulamalara geçebilirsiniz. OpenCV'nin sunduğu kapsamlı dökümantasyon ve topluluk desteği sayesinde, karşılaştığınız sorunlara kolayca çözüm bulabilirsiniz.

Görüntü işleme dünyasına adım atmak ve yapay zekanın gücünden faydalanmak için Python ve OpenCV harika bir ikili olmaya devam ediyor. Siz de bugün bu teknolojileri öğrenmeye başlayarak kendi projelerinizi hayata geçirebilirsiniz.

10 Mayıs 2025 Cumartesi

Python ile Web Scraping: Temel Bilgiler ve İpuçları

Günümüzde veri, birçok işletme ve araştırmacı için altın değerindedir. İnternet üzerinden manuel olarak veri toplamak zaman alıcı ve yorucu olabilir. Bu nedenle, Python gibi programlama dilleri kullanarak web scraping yapmak büyük önem taşımaktadır. Bu yazıda, Python ile web scraping'in temel bilgilerini ve başlangıç ipuçlarını ele alacağız.

Web scraping, web sitelerinden otomatik olarak veri çekme işlemidir. Python, bu konuda oldukça popüler bir dil çünkü Beautiful Soup ve Selenium gibi güçlü kütüphanelere sahiptir. Öncelikle, Python ile web scraping yapmak için gerekli araçların nasıl kurulacağını ve basit bir scraping örneği üzerinden ilerleyeceğiz.

Python ve Gerekli Kütüphanelerin Kurulumu

Python'ı resmi web sitesinden indirip kurduktan sonra, komut satırına pip install beautifulsoup4 ve pip install requests yazarak Beautiful Soup ve Requests kütüphanelerini kurabilirsiniz. Bu kütüphaneler, web sayfalarından veri çekmek için gereklidir. Eğer dinamik sitelerden veri çekmek istiyorsanız, Selenium kütüphanesini de pip install selenium komutu ile kurmanız gerekebilir.

Basit Bir Web Scraping Örneği

Web scraping'e başlamak için, öncelikle çekeceğiniz web sayfasının URL'sini belirlemelisiniz. Bu örnekte, Python'ın requests kütüphanesini kullanarak bir web sayfasından HTML içeriğini çekip, Beautiful Soup ile parse edeceğiz. Örnek kodumuz şu şekilde:

import requests
from bs4 import BeautifulSoup

url = 'https://ornekwebsite.com'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')

for item in soup.find_all('h2'):
    print(item.text)
Bu basit script, belirtilen URL'deki tüm h2 başlıklarını çekecek ve ekrana yazdıracaktır.

İpuçları ve En İyi Pratikler

Web scraping yaparken dikkat etmeniz gereken bazı önemli noktalar vardır. İlk olarak, scrap ettiğiniz web sitelerinin kullanım şartlarını kontrol edin. Bazı siteler, verilerinin otomatik olarak çekilmesine izin vermez. İkincisi, web sitelerine aşırı yüklenmemek için istekler arasında zaman gecikmesi eklemeyi unutmayın. Son olarak, çektiğiniz verileri etik bir şekilde kullanmaya özen gösterin.

Python ile web scraping, veri toplama sürecini büyük ölçüde basitleştirebilir. Umarım bu temel bilgiler ve ipuçları, kendi projelerinizde veri çekme sürecinizi hızlandırmanıza yardımcı olur.

28 Nisan 2025 Pazartesi

Python ile Veri Analizi: Pandas Kütüphanesi ile Başlangıç Rehberi

Veri analizi, günümüzde birçok sektörde önemli bir rol oynamaktadır ve Python, bu alanda en popüler programlama dillerinden biridir. Python'un veri analizi için sunduğu kütüphaneler arasında Pandas öne çıkmaktadır. Bu yazıda, Pandas kütüphanesinin temel özelliklerini ve nasıl kullanılacağını ele alacağız.

Pandas, veri manipülasyonu ve analizi için açık kaynaklı bir Python kütüphanesidir. Büyük veri setleriyle çalışmayı kolaylaştıran yapısal veri biçimleri sunar. Özellikle, Series ve DataFrame olmak üzere iki temel veri yapısını kullanır. Series, tek boyutlu bir veri yapısıyken, DataFrame iki boyutlu bir tablo şeklinde verileri saklamak için kullanılır.

Pandas kütüphanesini kullanmaya başlamak için öncelikle Python ortamınıza kurulum yapmanız gerekmektedir. Bunun için pip komutunu kullanabilirsiniz:

pip install pandas

Kurulum tamamlandıktan sonra, Pandas'ı projenize dahil etmek için aşağıdaki import ifadesini kullanın:

import pandas as pd

Veri analizine başlamak için, öncelikle veri setinizi yüklemeniz gerekmektedir. Pandas, CSV, Excel gibi birçok farklı dosya formatından veri okuyabilir. Örnek olarak bir CSV dosyasını Pandas DataFrame'e nasıl yükleyeceğinizi gösterelim:

df = pd.read_csv('veri_dosyasi.csv')

Bu komut, 'veri_dosyasi.csv' adlı dosyayı okuyarak bir DataFrame oluşturur. DataFrame, veriler üzerinde çeşitli manipülasyonlar yapmanıza olanak tanır. Örneğin, veri setinizin ilk beş satırını görmek için df.head() metodunu kullanabilirsiniz.

Pandas ile veri temizleme, dönüştürme, gruplama gibi birçok işlemi kolayca yapabilirsiniz. Örneğin, eksik verileri silmek için df.dropna() metodunu kullanabilirsiniz. Verileri gruplamak ve özetlemek için df.groupby() metodundan yararlanabilirsiniz.

Son olarak, analiz sonuçlarınızı kaydetmek isterseniz, DataFrame'i çeşitli formatlarda kaydedebilirsiniz. Örneğin, bir DataFrame'i CSV formatında kaydetmek için df.to_csv('sonuc_dosyasi.csv') komutunu kullanabilirsiniz.

Bu rehber, Pandas kütüphanesinin temel kullanımı hakkında sadece bir giriş niteliğindedir. Pandas, veri analizi için çok daha fazla özellik ve fonksiyon sunmaktadır. Bu kütüphaneyi öğrenmeye devam ederek, veri analizi becerilerinizi geliştirebilir ve verilerden daha fazla bilgi edinebilirsiniz.

2 Nisan 2023 Pazar

pyuic ile python (.py) Dosya Dönüştürme Hatası Çözümü

 PyQt5 ile hazırladığım bir formu MainWindows.ui dosyasını python dosyasına dönüştürmek istiyorum ancak dizinde .ui dosyasını görmüyor veya dönüştürme işlemi yapılsa bile dosyanın içeriğine bakıyorum herhangi bir kod gözükmüyor. Bunu çözmek için dönüştürmek istediğim .ui dosyasını shift tuşuna basılı turarak power shell ile açtım ve aşağıdaki kodu burada çalıştırarak kodların dönüştürülmesini sağladım. 

python -m PyQt5.uic.pyuic -x MainWindows.ui -o MainWindows.py


31 Aralık 2021 Cuma

__dir__() Komutu İle Class Özellerine Ulaşmak

Örneğin bilgisayar sınıfından türettiğiniz bir "bilgisayar2" isimli yen bir objeniz var. Bu objenizi kullanarak aşağıdaki gibi bir kullanımla obje üzerinden sınıf genelinde kullanabileceğiniz özelliklere ve bazı fonksiyonlara ulaşabilir ve bunların bir listesini yazdırıp inceleyebilirsiniz.

print(bilgisayar2.__dir__())

13 Aralık 2021 Pazartesi

For Döngüsü - Şu Kadarcık Bir Kod Yazmanın Mutluluğu

 sayilar = [1,3,5,7,9,12,15,19,21]

toplam=0
for sayi in sayilar:
     toplam=toplam+sayi
print(toplam)

12 Aralık 2021 Pazar

Anaconda JupyterLab Açılmama Sorunu ( Error executing Jupyter command 'lab': [WinError 5] Access is denied)

Bu sorunu çözmek çok basit. Anaconda uygulamasını sağ klik "admin" ile aç diyerek çözebilirsiniz. Bu şekilde uygulamayı başlattığınızda sorunsuz JupyterLab çalışacaktır.

30 Kasım 2021 Salı

Python Kivy Kurulum Hatası

 Sanırım kütüphane 3.10 python sürümünde çalışmıyor. Çok denedim ancak başaramadım. Python 3.9 sürümünü kurarak kivy kurulumunu yapabildim.

cmd ile: (Doğru python sürümü kurulduktan sonra)

pip install kivy

28 Kasım 2021 Pazar

f-string Kullanımı Python

 tekcift = 10

print(f"girilen sayı: {tekcift}")

f-string kullanımı çok kolay ve python'daki en güzel şeylerden biri. Yukarıdaki kodun çıktısına bakarak kolaylıkla anlayabilirsiniz. Kod kısmından "f"'yi çıkartıp programı yeniden çalıştırdığınızda kullanımı daha iyi anlayabilirsiniz.

20 Kasım 2021 Cumartesi

Split İle İçeriği Diziye Dönüştürme (String to Dizi List)

 message = 'Hello there. My names is Hakan'

print(message[1])
#split ile içerik bir diziye dönüştürülür ve dizinin
# 1. elamanı aşağıda yazdırılır
message = message.split()
print(message[1])

Python Replace Basit

 message = 'Hello there. My names is Hakan'

message = message.replace('Hakan', 'İsim')
print(message)

20 Ekim 2021 Çarşamba

19 Ekim 2021 Salı